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Abstract

In this paper, a mixed electric boundary value problem for a two-dimensional piezoelectric crack problem is pre-
sented, in the sense that the crack face is partly conducting and partly impermeable. By the analytical continuation
method, the unknown electric charge distributions on the upper and lower conducting crack faces are reduced to two
decoupled singular integral equations and then these two equations are converted into algebraic equations to find the
full field solution. Though the results suggest that the stress intensity factors at the crack tip are identical to those of
conventional piezoelectric materials, but the electric field and electric displacement are related to the electric boundary
conditions on the crack faces. The electric field and electric displacement are singular not only at crack tips but also at
the junctures between the impermeable part and conducting parts. Numerical results for the variations of the electric
field, electric displacement field and J-integral with respect to the normalized impermeable crack length are shown.
Some discussions for the energy release rate and the J-integral are made.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to their intrinsic electro-mechanical couplings, piezoelectric ceramics are widely used as sensors,
transducers and actuators etc. Defects, such as cracks, dislocations, and voids, inevitably exist during the
manufacturing processes or in operation under high applied electro-mechanical loadings. Therefore, the
reliability problem emerges and requires a better understanding of the integrity of these materials chosen
for engineering devices.

Recently, researches on piezoelectric materials are booming. Although many efforts have been devoted
to both of the linear and non-linear analysis of fracture mechanics of piezoelectric materials, the influence
of the applied electric field on facture is still not well understood. Parton (1976) first investigated the
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fracture problem in piezoelectric materials and in his paper the crack was taken to be a permeable slit, i.e.
the electric potential and normal component of the electric displacement were continuous across the crack
surface. Sosa and Khutoryansky (1996), Gao and Fan (1999) obtained the exact solution of the plane
problem for an infinite piezoelectric media with an elliptical cavity under the permeable boundary condi-
tion. Based on the solution of Gao and Fan (1999), Huang and Kuang (2000) obtained an asymptotic
electro-elastic field near a blunt crack end in a transversely isotropic piezoelectric material, Kuang and Ma
(2002) pointed out that for the problem containing a elliptic cavity filled by air can be approximated by an
impermeable problem on the elliptic boundary (Appendix C). Deeg (1980), Pak (1990, 1992), addressed the
plane and anti-plane fracture problems of piezoelectric materials and obtained a closed form solution of the
stress field and electric displacement near the crack tip under the impermeable electric boundary condition.
Suo et al. (1992) and Suo (1993) predicted that in the linear frame of piezoelectric theory the electric field
always retards the crack propagation for the impermeable electric boundary condition and promotes it
under the conducting condition. The mechanical energy release rate (ERR) proposed by Park and Sun
(1995) and Jiang and Sun (2001) is used to explain their experiment results, and the results predicted by
their theory fit their experimental results well. Gao et al. (1997) and Fulton and Gao (1997) developed
a strip electrical saturation model and the local ERR was used to explain the effect of the applied elec-
tric field on fracture. Ru (1999a) extended the strip saturation model to study the conducting crack
with limited electrical polarization. Zhu and Yang (1997) and Yang and Zhu (1998) investigated the
shielding effects by the switch wake of the ferroelectric domain behind the crack. However, none of the
developed models can fully explain the effect of the electric field observed in experiments which seems
contradicting with each other (Park and Sun, 1995; Wang and Singh, 1997; Fu and Zhang, 1998; Fu and
Zhang, 2000).

The mixed boundary value problem can be found in some cases, such as that the electrolyte is not fully
filled inside the crack, the distributed internal piece-like separated electrodes in damage detection problem,
interdigitated electrodes, thin layer conducting surface becomes discontinuous during fabrication or by
electro-mechanical fatigue damage etc. Lynch et al. (1995a,b) and Lynch (1998) found that the electric
boundary conditions used in the existing theories are not identical to those of observed in experiments and
they stated that whether discharge of the air within the crack happens is crucial in determining the electric
field near the crack tip. Breakdown of the dielectric inside the crack was actually observed in their ex-
periments. Zhang et al. (2000, 2001) also pointed out that the local partial electric discharge may make an
impermeable crack conduct electrically and change the failure behavior of piezoelectric materials. Recently,
Huang and Kuang (2001) conducted an analysis on a non-ideal piezoelectric crack problem using the
permeable electric boundary condition. In that model, crack tips are mathematically sharp while in the
middle of the crack there is a small gap between the opposing crack faces. They found that there is a very
high electric field near the tip within the flaw which may cause the air near the crack tip within the flaw to
break down. The discharge process at the gap near the crack tip is a very complex dynamic process. When
the electric field obtains a critical value, the air breaks down and becomes conducting gas, but after air
breakdown, the electric field diminishes rapidly and the air becomes insulating gas again. In the usual case,
this process will be repeated and form discontinuous electric sparks. As a first approximation and quali-
tatively disscussion, the discharged dielectric within the crack can be modeled by conductors. The electric
condition near the crack tip is taken to be conducting, and in the middle of the crack, is taken to be im-
permeable due to its opening. So, this consideration also leads to a mixed boundary value problem.

In this paper, the mixed electric boundary value problem for a two-dimensional piezoelectric crack is
solved. The complex continuation method (Muskhelishvili, 1953) will be employed to solve the full electro-
mechanical field. This paper is arranged as follows. In Section 2 we review the basic equations for the
generalized piezoelectric plane problem. The derivation of the analytical solutions is elaborated in Section 3.
In Section 4, the expressions of the electro-mechanical crack tip field are given and numerical calculations
for the variations of the electric field and the electric displacement field with respect to the normalized
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impermeable crack length are illustrated. Numerical computation for the J-integral and some discussions
on the ERR are presented in Section 5. Finally conclusions are made for the paper.

2. Basic equations

In a fixed rectangular coordinate system (x;, x5, x3), the constitutive equations for linear piezoelectrics of
the second kind can be written as

0 = Cijthey + enjdy,  Di = eqquyy — Ky, (i,),k,1=1,2,3), (1)

where repeated Latin indices mean summation and a comma stands for partial differentiation. ¢;;; are the
elastic stiffnesses under constant electric field, e;; the piezoelectric stress constants, and k; the permittivity
under constant strain field. ¢;;, u;, D;, E;, and ¢ are stress, displacement, electric displacement, electric field
and electric potential respectively. Here we only address the general two-dimensional problem in (x;,x;)-
plane, i.e. all variables are constant along x3 axis. (In this paper notations x; = x and x, = y will be adopted
simultaneously.) Following Suo (1993), Chung and Ting (1996) and Kuang and Ma (2002) the generalized
displacement solution can be obtained by considering a linear combination of four complex analytical
functions,

4 4
u= { ”(Z } =2ReY afy(z), ur=2Red anfi(z). (2)
o=1 o=1

The uppercase Latin subscript and the Greek subscript all range from 1 to 4, the lowercase Latin subscript
from 1 to 3. Note in this paper that implicit summation convention is used only for Latin indices, while for
Greek indices we write the summation symbol explicitly. The generalized stress function ® with the
components @;(j = 1,2,3) of the resultant force and the electric displacement flux @, on an arc, can be
represented as,

®(z) = 2Re i:bmfo{(zm)7 ®,(z) = 2Re 24: brofu(zy), (3)
=1 a1
where z, = x + p,y. The eigenvalues p, and the eigenvectors a, can be obtained from the following equation:
[Q+ (R+R")p+Tp*la=0, (4)
where
Q= [QE €11 R = R" €21 T=— lTE €2 1
elT1 —w | e; K1 | e§2 —Kn | (5)

E _ E _ E _ _
Oy = cart, Ry =cir, T; = coo, (ez/)s = €jjs,

and the eigenvectors b, can be obtained from the following relations:

b, = (R" + p,T)a, = —(Q + p,R)a,/p,. (6)
Let F,(z,) = f,(z,), the generalized stresses are as follows:
02 4
2(z) = {D2 } =@;; =2Re ;bJaFa(Zm) ;
- ()

4

Z bJupaEc (Zot)

=1

0y,

ZIJ(Z) = {D } = —‘D_;tz = —2RC
1
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and the electric fields are

4
Ey = —uy; = —ZRezawFa(Za),
a=1
s (8)
Ey = —uyy = —2ReZa4apxFu(za).
=1
For stable materials eigenvalues cannot be real (Suo et al., 1992; Ting, 1996). The eigenvalues p, are
assumed to be distinctive in this paper.

3. Solutions

Consider a crack of length 24 in an infinite piezoelectric material subjected to uniform remote electro-
mechanical loadings 257, 277. The crack faces are assumed to be traction-free and there is no external
charge on the impermeable part and the electric potential on the conducting crack surfaces is taken to be
zero. Let line L; and L; denote the electrically conducting parts and L, denote the impermeable part (see
Fig. 1). The length of L, is 25 and the length of L; and L; is set to be equal to 0 = a — b for easy analysis.

The electro-mechanical boundary conditions on the crack faces are

azij(x, 0)=0, E(x,00=0, x€&L;ULs, for the conducting parts, 9)
05;(x,0) =0, Dy(x,0)=0, xe& Ly, for the impermeable part. (10)
The superscripts “+”° and “—" represent the value on the upper and lower crack surfaces respectively. The
single valued conditions of generalized displacement on the crack faces require
/L [17,(x,0) = w7, (x,0) | d¥ = 0, /L (07(x,0) = ¢3(x,0)] dx =0, (11)
2
and it is also assumed that there is no extra free charge within the conducting parts, i.e.
/L [D;(x, 0) - D; (x, 0)}dx —0, /L [D;(x, 0) - D; (x, 0)}dx —0. (12)
1 3

Employing Egs. (2), (3), (7), (8) and the relation F (x) = F : (x), Ff(x) = F, (x), Egs. (9)«(12) can be re-
written as

> buFi(x)+ Y buF, (x) =0, x€LUL, (13)

Fig. 1. Crack configuration.
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Za;;aFf(x) + Zc’uifj(x) =0, x€L ULs, (14)
Zb‘/xFui(.X)‘f'ZB/“Fj(x) :07 xELz. (15)

[ S Relan (e~ £)Jax =0, (16)
| S Relan(ry ~ £ )ar =0, (17)
/ S Re[b (F — F;)]dx =0, (18)

/ > Re[by,(F; —F, )] dx =0. (19)

From the electro-mechanical loading conditions Egs. (13)—(15) on the crack faces, we have

23,(x,0) + 25, (x,0) = ZLbJ“Ff(x) + by F (x) + by, (x) + byuFs (x)] = 51(x) 4y, (20)
23,(6,0) = 25, (6,0) = Y [byFy () = by (x) + by, () = by ()] = 2(x) 0, (21)
where
|0, x €L, |0, x €L,
si(x) = {Dz+ +D;, xeL ULy s2(x) = {D; —D;, xelL ULy’ (22)

which are unknown functions to be determined. Using the analytic continuation method, Egs. (20) and (21)
can be solved as a non-homogenous Riemann-Hilbert problem (Muskhelishvili, 1953). We get

Zl_bjan(z) + BJaFac(Z)J = Xa(z)SlJ(Z) +Xa(z)(ﬂ0.l + BIJZ)7

o (23)
> [BrFale) = BiFa(z)| = $2(2) + By,
where f,, f,, and fB,, are real numbers and
o 1 S1 (t)54J - 1 Sz(f)54j
Su(z) = 2mi /L (t—2)X;(2) dr, S(z) = 2mi /L t—z d, (24)

which are analytic on the whole plane except on the crack faces. Note that in the above equations a
subscript « for z is dropped and a replacement should be made once the solution for F,(z) obtained. X,(z)
and two other functions X,(z) and X, (z) which will appear later are shown as:

1 1 1
X.(z) = ﬁ, Xp(z) = T X (2) = X (2) X (2) = e Y (25)

The branches of the functions vz2 — a? and v/z2 — b? are taken to be z as z approaches infinity, therefore the
values of X,;(z), X,(z), X, (z) on the crack upper and lower crack faces are:
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X (x) = = )(*()C):X’(x):_i1 xel
@ Vi -/ - ? b Va2 = b2’ ’
-1 Fi
X (x)=X,(x) = , X)) =———, x€L,,
w0 =Xt = = MW= el -
£ Fi ) = X () = L
Xab(x)_mm) Xb (x)_Xb (x)_mv XEL3,
Fi
XE(x) = ——, x € L.
) = s
According to the Plemelj formulas (Muskhelishvili, 1953), from Eq. (24), we can get
_ 1 51(8)04y _ 51(x) 04y
SD(X)+S1J(X):E/L mdt, SD(X)*SIJ(X):W, (27)
1 52(2)0
5560+ 5500 = [ 0% a0 - 5500 = a0 (28)
-
With Eq. (23) we have
1 .
F.(2) =35, Xa(@)S1s(2) + $2(2) + Xa(2) (Bus + Bus2) + B, (29)
where b} is the element of [b 1,) " Recalling the remote loading condition, we have
2= ZRC[Zizl beFx(OO)} = Re[fy; +iBy] = B, (30)
20 = _2Re{22:1 bJapaF;(oo)} =—Re [Zi:l brupsbog (Bix + iﬁZK)}

so the unknown constants f3,,, 5,, can be obtained (Huang and Kuang, 2001). With Eq. (29), one arrives at:

F) 4 () = b2t K () (53 6) — S5,0) + 85 (0) + S5, x) +2ify ) a
() — By () = bt DX () (8100 + 85,00) + 5, 6) — 85,00+ 26 () By + o))

After an algebraic manipulation for Eq. (14), we have

Re |aw(F, (x) + F, (x))] =0, xeL UL, (32)

RCZLCW(F;(X) —F, (x))] =0, xeL ULs. (33)

o

According to Suo et al. (1992), define ¥;; =, iamb;,1 and H;; = Y;; + Y, the former is a Hermite matrix
and the latter a real symmetric matrix. The dimensions of ¥;; can be found in Suo et al. (1992). We have

S Relan(F +F)| =Y zﬂ: Re|anbibis(Fy +F; )|
=Y Ym [iahb;;b,(,; (FB+ + F/;ﬂ = Im[Yubi (F) £ F, )] (34)
x P P

With Egs. (31)—(33), one reaches
Im{ Yy [ X, (6)(S;(x) = Sp; (x)) + 83, (x) + S, (x) +2ify, ]} =0, x €Ly UL, (35)
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Im{ ¥y |X;" () (S35 (x) + S5, () + 85, () — S (6) +2X;" () (B + Bux) ]} =0, x€LiULs.  (36)
Invoking Egs. (27) and (28), it is not difficult to show that
1
Im{Y44 |:S1(x) —|—* / Sz(t) dt:| + 2iY4Jﬁ2/} = 07 X € L] UL3. (37)
m o t—Xx
Im Y4X+(x)l/¢dt+2Y X)) (Boy + Px)p =0, xel UL (38)
441y i J, (Z —x)Xj(t) 472 0J 1 =Y 1 3.
Ru (1999b) showed that
Y44 — 744 =0 or Im[Y44] =0. (39)
Hence the integral equations (37) and (38) for the unknown functions s;(x) and s,(x) are decoupled,
H.
ﬂ/ mdt—l—bHyﬂy :O, x €L ULs. (40)
o J, t—X
1 Sl(l)
Hy— dt—|—2H4J(ﬁ0J—|—ﬁux) :07 x €L UL;j. (41)

ni J, (=X ()
It is supposed that the electric displacement has the following structure:
Ds(z) = Re[Py(2) X (2) + Pu(2)Xa(2) + Po(2)X,(2)] + C, (42)

where polynomials P,;(z), P,(z), P,(z) are of the order of 2%,z and z respectively and C is a real constant. So
from Egs. (42), (22), (26), we get
{ $2(x) = 2i(po + 712 + 7267) X (%) + 2i(p3 + 7420) X, (%)

. X € Ll UL37 (43)
s1(x) = 2(ys + yex0) X, (x) + 2C

where 7,, i = 0-6 are real constants. Substituting the expressions of s;(x), s2(x) into the singular integral
equations (40) and (41), we get

H. Mt + 1) X (t et
;{4/ (Vo + 71t + 2) X5 (1) + (73 + 74t) a()d,+H4,,ﬁz,:0, xeL UL, (44)
T J 0L, t—x
! 2(ys + 961) X (1) +2C
i /LIUL3 (tfx)Xj(t) + 2Hyy (Bos + B1sx) , X &€l 3 (45)

Now the solutions for the integral equations are reduced to find the seven unknown constants y,, i = 0-6.
Using the singular integrals listed in Appendix A, we have

H. V3 + )X (¢
44|:TCI'V2+/ ()}3 y4)a()dt:|+H4jﬁ2]0
LiULs

i t—x

, x€eLiULs.

1 1
Hag —2( = miys — miyex) + Haa— dt + 2Has (Boy + Bryx) =0

/ 2C
T JruLs (t _x)X;(t)
(46)

In Eq. (46) the integral terms are kept since their closed forms are very complicated. The above polynomials
must hold for all x, therefore we have

C=0, p3=7=0, y,="HyPsy/Hu, 7s=HiyPos/Hu, 6= HiP;/Ha. (47)
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Using Egs. (22), (24), (26)—(28) and integrals in Appendix A, the second term of Eq. (31) can be reduced to
b X () [ = 0as(ys + v6x) +10as (yo + 1% + 9207 ) X (x) + (Boy + Bix)], x €L1ULs
b X () [0w (s +969) (g — 1) + (B + Bux)], e Lo
(48)
therefore,
ZbM(F: — F) = X, (0)[ = 0as (5 + p6x) + i0as (9 + 11x + 925) X, (x) + (Boy + Bisx)], x € LiUL;s
(49)

and

;wF;—a>=X;<x>[54j<y5+y6x>( )4 ot h)], vt (50)

From Eq. (49) there is

Re sztoc(F; — F,) = Reli(yy + ppx +90°) X, (0)X,) (x)], x1 € Ly UL
So, substituting above equation into Egs. (18) and (19) which represent that there is no extra free charge on
the conducting surface parts, we get

Yo 7% + X Yo + 91X+ X
—a Va* —x*Vb* — x? b Va2 —x>Vb* —x?

The above equations give the solutions for y,, 7,, 7, as

"= Oa Yo = _'))2]2/]], (52)

where

dx =0, dx = 0. (51)

a x2 a 1
L, = dx, I = dx, 53
? /h Vxr —b*a* — x? ! /b VX2 —b*a? — x? (53)

which are two elliptic integrals and their values can be obtained by numerical integration program or by
looking up the Table of elliptic integral (Gradshteyn and Ryzhik, 1980). With Egs. (34), (49), (50), we have

Y Relan (B —F7)] = Im{X (0)[ = Yu(s + 760) + ¥ (00 +72°)X () + Y (Box + Bigx)] }

=X, (x) [ = Hya(s + 96%) +i(Ya — Y a) (79 + 727X, (x)

+ H(Box + Bixx)] /2i, x € L UL;, (54)
and
> Rela ()] = a0 | s 900 () = 1) + VB + o)}
= X' (x) [HJ4(y5 + 76X) (;Zig; - 1> + Hy (Box + ﬂ,,(x)] /21', x €L, (55)

Hence, from Eq. (17), which represents the single valued condition of electric potential on the impermeable
surface part, one has
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/L2 X (x) [H44(v5 + Pex) (f{:igg - 1> + Hyx (Box + Bigx) [dx = 0. (56)

In the above equation, the integral containing the odd function xX" (x) is identically equal to zero, so the
condition is equivalent to

[ Huans(0 () = X, ) + X () HacBo ) s = 0. (57)
Ly
Invoking the relation ys = Ha;f,/Hss in Eq. (47), we get
/ Hagys X (x) dx = 0, (58)
Ly

Hence we have
Vs = HaxBox /Haa = 0. (59)
Using Eqs. (49) and (50), the displacement single valued condition Eq. (16) is rewritten as

X, (x) [ — Hu(ps + 76%) +i(Ya — Y ja) (70 + 7257 ) X (x) + Hix(Box + ﬂle)]

L1UL3

/w — Hialys + 76%) + Hix (Bog + Bi)]dx = 0. (60)
With Eq. (52), it is known that

X, (x)(y0 + 7237)X, (x)dx = 0.

LyUL3

So Eq. (60) can be further simplified to be

" X, (x) [ — Higypex + Hix (Box + :811<x dx + / X, (x)| = Hupex + Hix(Box + ﬁle)}dx
1ULy
— Hufu [ X0t Hf [ X ) MM/X (61)
LiUL; Ly

Hence we have

Hjx fox = 0, (62)
together with ys = Hyx fox /Has = 0 and knowing H is a non-singular matrix, one arrives at

Box = 0. (63)

Now all the unknown constants are solved. With Eqs. (24) and (43) and the integrals listed in the Appendix
A, we have

Si(z) = % /L . %{}?@(‘) dr = 34962(X(2)/ X (2) — 1), (64)
Sy(z) = % /LUL 2000 + yl:j? ) ( ) dr = 541[ (90 + VzZZ)Xab(Z) - iV2]~ (65)
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Therefore, the field solution Eq. (29) can be written as

1 . : 1 .
= Ebw;l [VﬁZ(Xb(Z) = Xa(2)) +i(po + 122 Xa(2) — 172] + zbul [B1,2Xa(2) + iByy]- (66)
After a substitution of the solution Eq. (66) into Egs. (7) and (8) and (11) and (12), the boundary conditions
are all satisfied. Hence the correctness of Eq. (66) is proved. Let the impermeable length b equal to zero or a,

the limit analysis reveals that y, = 0 for b = 0 and 7, = —a?y, for b = a, so it is not difficult to show that the
present solution recovers the conventional impermeable crack and conducting crack solutions.

Fy(2)

4. Crack tip fields

In this section, we devote our attention to the near-tip crack tip field. In the following, without losing
generality, we only discuss the right crack tip field. As we know, an impermeable crack intensifies an electric
field applied perpendicular to the crack, but does not perturb a field parallel to the crack; conversely, a
conducting crack intensifies an electric field applied parallel to the crack, but not a field perpendicular to it
(Lynch et al., 1995a). The electric displacement intensity factor for the impermeable crack is defined based
on D;(x, 0) near the crack tip, but the electric field intensity factor for the conducting crack is on E;(x, 0), so
we only give the expressions of E;(x,0) and D,(x,0) directly ahead of the crack tip.

Introduce two polar coordinates (r,0) and (r,,0,) with their origins located at points (x = a,0) and
(x = b,0) (where singular fields may be located) respectively. The electro-mechanical field directly ahead of
the crack tip on the axis can be obtained after substitution of Eq. (66) into Egs. (7) and (8)

_ By ogx
sz(x) - \/xz — (,12 - \/x2 — a2 I (67)
Hyjo5,x 1 1 D5x
bofx) = Hy, (\/x2 — b2 a V2 — a2> * 2 —p (68)
~ PyHy(L/h X)) x
b= mave N a— (69)

From Eq. (67), it is always possible to define stress intensity factors
Ky = Vnaocs;, Ki=+/macs, Kum = +/macy, (70)

which is identical to the conventional stress intensity factors for anisotropic materials. However, under the
present mixed boundary condition, the near-tip electric field and electric displacement field are complicated.
The crack extension is determined by the K-field near the tip, but sometime we also assume that the failure
is determined by the maximum tension stress at a distance x = ry (Kuang, 1982) ahead of the crack tip and
this is also valid for a non-ideal crack and two singular points are very near each other. According to this
fact, the electric field and electric displacement near the crack tip x = a will be classified into three different
cases by the relative magnitude of 6 = a — b and r.

Case 1: 6 > ry, that is to say the singular field at x = b cannot influence the singular field at the physical
crack tip. In this case the electric displacement and electric field intensity factors are identical of those of the
conducting crack.

Kp = lin& V2rrD,(r,0) = —H4j0§;\/;tE/H44, (71)
_ PyHu/m(L/1 — a*)

Kg = !Elg V 27U"E1 (I", O) = 2\/am — Ggmlm[nj} (72)
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Case 2: 6 < ry, which means the point x = b and the point x = a can be treated as one point. Hence the
intensity factors are identical to those of the completely impermeable crack.

Kp = lin(} V2rrDs(r,0,) = Dy’v/ma. (73)
Kg = lin(}\/anEl (r,0) = —v/maoy; Im[Yy;]. (74)

Case 3: 6 ~ ry, 1.e. the singular field at x = b interacted with the singular field at the physical crack tip but
they cannot be treated as one point as in Case 2. In this case, an electric field intensity factor and electric
displacement intensity factor (if defined in the same manner as usual) will depend on ¢ and r. The intensity
factors transit from impermeable ones (Case 2) to conducting ones (Case 1) as 6/ry < 1 shifts to §/ry > 1.

From the above discussion it is obvious that the electric intensity factors at the crack tip are strongly
dependent on the boundary condition at the crack surface. In some cases the discontinuous electric spark
occurs in the air gap near the crack tip, so the electric intensity factor varies between Cases 2 and 1 or 3.
This phenomenon may be related to the electric fatigue damage.

To reveal the structure of the electric field ahead of the crack tip, we consider two special poling di-
rections for a transversely piezoelectric material with its poling axis aligned with the x,- and the x;-axis
respectively.

4.1. Crack tip fields when the poling direction is aligned with the x;-axis

When the poling direction is aligned with the x,-axis, we have

1/c. 0 0 0 ¥y ¢
H=2 0 1/¢ 1/e |, ImY]=[-y 0 o0 |, (75)
0 1/e -1/ {0 0

where Cy, Cr, e, ¢, ¥, and { are some positive material constants for stable materials (see Lothe and Barnett
(1976), Suo et al. (1992) and Ru (1999c¢)). The dimensions of components in Y are given in Suo et al. (1992),
and 1/Cy, 1/Cr,  have the dimensions of [elasticity] !, i.e. m?*/N, 1/e, { have the dimension of [piezo-
electricity] !, i.e. m?*/C, and ¢ has the dimension of permittivity F/m. Here, we adopt the convention by Ru
(1999¢), which the third column and the third row of the matrices have been deleted and the subscripts used
for these 3 x 3 matrices are 1, 2 and 4. From Egs. (68), (69), (75), we have

£055X 1 1 X
Dyx) = 2 ( - >+D°°7, 76
2(x) e V-2 Vi—b 2 /2 _p2 (76)
2 _ L/I 00
Ey(x) = x* — b/ Poa _¢ ¥ (77)
V2 — a2 — 2 2 ()
For a PZT-4 material whose material constants and the electro-mechanical loading relations are listed in
the Appendix B, the numerical forms of the above two equations are

% . o [02533 1393 .
DQ(X) :ﬂ(1003E2 _0.178011) X 10 9+022x<\/x2_a2_\/x2_b2) X 10 117 (78)
x2 —12/11 00 50 Gg?x

Letting b = 0 and a, the values for I,/I; are 0 and & respectively, so the crack tip electric field and electric
displacement can recovered for the completely conducting and impermeable crack. From Eq. (79), we can
see that ¢5) can induce a singular electric field £, ahead of the crack tip but ¢35 cannot do.
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To show the near-tip electric field and electric displacement variations with respect to the ratio b/a,
we consider the electric field and electric displacement at the point x/a = 1 + (r/a) = 1 + 1073, y = 0 under
the following two loading conditions: (a) only ¢35 =1 MPa, E° = 0.1 MV/m are applied and (b) only
022 =1 MPa, E* = 0.1 MV/m are applied. For clarity, we define some normalized quantities appeared
in the Figs. 2-5, Dy = V2mrDy(a +r ,0)/(VraknEYF), Ei; = V2rrE (a +r,0)/(y/ma ), Kp;=Kp/
(vmaxy E;) and Kg; = Kg/(\/7a >°) where j indicates the corresponding remote electric loadlng and Kp
and K are defined by Egs. (71) and (72) respectively. Figs. 2(a), (b) and 3 give the variations of D,;, E; and
D, with respect to b /a respectively. For a completely impermeable or a completely conducting crack, these
values are the corresponding normalized intensity factors. However, in the present model, they are asso-
ciated to the ratio b/a. For loading condition (b), E;(x, 0) in front of the crack is identically vanishing and it
will not be plotted. _

It can be seen that Kp; is almost equal to D,; for b/a ranging from 0 to 0.9 (Figs. 2(a) and 3). Deviations
are observed in the interval for b/a ranging from 0.9 to 1 where the singular fields at (x = a,0) and (x = 5,0)
interacting with each other. The plots for E;; and Kr, are indiscernible (Fig. 2(b)). This is because the first
term in Eq. (77) transits gradually to the impermeable case, not as sharply as the case for D,(x,0). So the
approximation formula of Eq. (72) is exact for most b/a. This conclusion also holds when the poling axis is
aligned with the x;-axis discussed in Section 4.2.

4.2. Crack tip fields when the poling direction is aligned with the x;-axis

When the poling direction aligned with the x;-axis, the H and Im[Y] matrices are

1/Cr 0 /e 0 ¢ 0
H=2[ o 1/cc 0 |, ImlYl=|-y 0 ¢]. (80)
e 0 -1/ 0 - 0
K
D,, / \ E,.K,,
0.425 o
1.0 4
0.420 / 1
0.8 -
<4 0.420 —
0.415
0.415 = 0.6 4
0410 4 44104
0.4
0.405 o 0405
0.2
0.400 o
0.400
0.9990 0 9;92 0 9'994 0 9;96 0 9;?93 1 0'000
T T T T T T T T T T T 1 0.0 T T T T ' T i T ! !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(@) bla (b) bla

Fig. 2. For the remote loading ¢35 = 1 MPa, £ = 0.1 MV/m and x, being the poling axis, (a) variations of the Kpi and Dy with
respect to b/a; (b) variations of the Kg; and E;; with respect to b/a.
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Fig. 3. For the remote loading 655 = 1 MPa, E5° = 0.1 MV/m and x; being the poling axis, variations of the IN(D2 and D,, with respect to
b/a.

0.8
0.7
0.6
0.5
0.4
0.3

0.2

b/a

Fig. 4. For the remote loading ¢35 = 1 MPa, E° = 0.1 MV/m and x, being the poling axis, variations of the I~(El and E; with respect to
b/a.

So

Dalx) = “( : : ) S S (81)
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D ~ o~
22 E. K
25 12> B g2
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0.20
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0.16
154151 0.14
0.12
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Fig. 5. For the remote loading ¢35 = 1 MPa, E3° = 0.1 MV/m and x; being the poling axis, (a) variations of the Dy, with respect to b/a
(Kp, = 0); (b) variations of the Kg, and E, with respect to b/a.

_ x> — b/l Boa P a5
B = () e (®2)

The numerical expressions of Eqs. (81) and (82) for PZT-4 are as follows:

 (13.056EF +0.27170% | 0.253305 B
Ds(x) —x< — o) <107, (83)
Eir) = — 2B e 0 01880%) + 00188 225 84
1(x) = R~ ( ;. — Y. ‘722) +0. g ( )

Eqgs. (83) and (84) can also restore the conducting and impermeable crack tip fields when 5 =0 and a
respectively as in Section 4.1. Eq. (83) manifests that when the poling axis is along x;, 55 can induce a
singular electric field E; ahead of the crack tip but ¢5) cannot do.

For o3 and E;° loading, D,(x, 0) is identically vanishing ahead of the crack tip (Eq. (83)) and will not be
plotted. From Fig. 4, E1(x,0) decreases as b/a increases from zero to unit. For ¢35 and E5°, E1(x,0) and
D,(x,0) both increase as the impermeable length becomes longer (Fig. 5).

Conclusions for the above two subsections are made as follows. The electric field and electric dis-
placement ahead of the crack tip transit from the standard conducting crack to the impermeable crack as
b/a changes from zero to unit; for E{° loading, making the conducting length shorter is helpful to diminish
the electric field and electric displacement concentration near the crack tip irrespective of the poling di-
rection; for E5° loading, the longer the conducting length, the smaller the electric field and electric dis-
placement concentration near the crack tip.
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5. Energy release rate and the J-integral

It is well known that the crack extension force G is equal to the J-integral
J = /(wm — Gty — m:Di 1) ds (85)
r

when the contour I" only surrounds the crack tip and the crack faces are free of external charge and traction
(Pak, 1990; Suo et al., 1992). In Eq. (85) w is electric enthalpy. In the present model, the numerical
computation for J-integral will also be classified as that stated in Section 4 for crack tip fields. First, we give
the crack tip ERR by the Irwin closure integral (Suo, 1993)

1

G= 1111’% 271 / {sz(l - }",O) [uj(ra ‘II) - Mj(l", - 7'[)] +E1<I - r,O)[q(r, 77:) - Q(ra - n),]}dr, (86)
- 0

where ¢ is the electric charge accumulated on the conducting crack surfaces and / is an infinitesimal crack

extension length. Note that Eq. (86) holds only under the assumption that » is much smaller than the length

J. Hence, we have

noXo3%a HH, LI —a*)* (H. 2
G— 2j %2k {ij 4 4k:| 77T( 2/1 a) ( 4Kﬁ2[() ' (87)

- 4 H44 4a(a2 - b2) H44

We define the J-integral as J' when I' surrounds only the right crack tip (x = a) and J"! when I surrounds
two singular points (x = a,0) and (x = b,0) (Fig. 6). Our numerical results find that G is always identical to
J! as shown by theoretical analysis. Eq. (87) can be reduced to the completely conducting crack solution,
but it cannot to the completely impermeable crack solution when b = a. The reason is that: when the crack
becomes completely impermeable, two singular points x = a and x = b coincide with each other, but the
ERR defined by Eq. (86), which is equal to J', does not include the singularity at x = b. To evaluate the
correct ERR for an impermeable crack, the contour I' must contain two singularities, and our numerical
and theoretical results find that the ERR obtained from completely impermeable crack (Suo et al., 1992) for
an impermeable crack is definitely equal to JY. In order to study this phenomenon further, we show both
the variations of J' and J with respect to the ratio 5/a. So in the numerical calculation, the half crack

I

Ty

v

Fig. 6. Illustration of the two integral contours I'; and I'; surrounding one singularity and two singularities respectively.



1448 Z. Huang, Z.-B. Kuang | International Journal of Solids and Structures 40 (2003) 1433-1453

Table 1
Table for the ERR for the completely insulating and conducting cracks with the half crack length a = 0.1 m
Loading condition 0% =1 MPa; E* =0.1 MV/m 65 =1 MPa; ES° =0.1 MV/m ¢35 = 1 MPa for references
Conducting (poling axis x;) 14.61 3.402 3.402
Insulating (poling axis x;) 2.767 —20.64 2.767
Conducting (poling axis x,) 21.595 3.629 3.629
Insulating (poling axis x;) 3.626 —9.826 3.626

The unit for ERR is N/m.

length a is assumed to be 0.1 m. Table 1 shows the ERR for the completely conducting and impermeable
cracks for three loading conditions for comparison with the plots of J' and J™.

Figs. 7-10 give the plots of the variations of J' and J! with respect to the ratio b/a. From Figs. 7(a), 9(a)
and 10(a), it is revealed that J' decreases as b/a increasing (i.e. the conducting length decreasing). Fig. 8(a)
shows that under this loading condition, J! is irrespective of the ratio b/a. The ERR for a completely
conducting crack can be obtained from J' (Figs. 7(a)-10(a)) and the ERR for a completely impermeable
crack can be obtained from J!! as shown in Figs. 7(b)-10(b) when b/a approaches to unit. These figures also
show that the difference between J' and J! is obvious. For b/a > 0.9, we see in Figs. 8(b) and 10(b), when
Ey is applied J" decreases with increasing b/a, but Figs. 7(b) and 9(b) show that when Ef* is applied b/a is
no influence on JY. This means that as the impermeable length increases the impermeable singularity at
x = b comes into effect. It can be concluded from Figs. 7-10 that as the impermeable length increases the
ERR decreases. It is also noted that for classical conducting crack J = G > 0 and in our case J is the lower
limit of J, so always J' > 0. For classical insulating crack J may be negative and in our case J is the upper
limit of J, so J may be positive or negative. In practical experiments the crack tip condition is very
important. If the air gap behind the insulation crack tip is breakdown then the J value increases and may
give rise to damage. The spark phenomenon may lead to fatigue.

24

N/m
1 46 oN/m
22
20
4.4 -
18
16 +
? 4.2 J!
_©144
-
12
4.0 4
10 <
8 - 3.8 -
6 - J"
4 3.6 o
2 T T T T T 1 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.90 0.92 0.94 0.96 0.98 1.00
(a) bla (b) b/a

Fig. 7. Variations of J-integral value with respect to »/a under the loading 655 = 1 MPa, E* = 0.1 MV/m for the poling axis aligned
with x,-axis (a) J'; (b) J! and J".
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Fig. 8. Variations of J-integral value with respect to 5/a under the loading ¢35 = 1 MPa, E5° = 0.1 MV/m for the poling axis aligned

with x,-axis (a) J'; (b) J! and J'.
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Fig. 9. Variations of J-integral value with respect to 5/a under the loading ¢35 = 1 MPa, E;° = 0.1 MV/m for the poling axis aligned

with x;-axis (a) J'; (b) J! and J.

Experiments show that crack extension is determined by the stress state within a characteristic distance r,
ahead of the crack tip, so when & > ry, then J' is an appropriate control parameter for fracture, but J'" is an
appropriate one for 6 < ry. This conclusion is consistent with the near-tip electric fields and electric dis-
placement fields analysis in Section 4. This proposition is also consistent with Kuang’s opinion (Kuang and
Mao, 1996; Kuang and Ma, 2002) about the maximum ERR criterion. That opinion indicated that the
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Fig. 10. Variations of J-integral value with respect to 5/a under the loading ¢35 = 1 MPa, E5° = 0.1 MV/m for the poling axis aligned
with x;-axis (a) J%; (b) J' and J'.

direction of crack extension should be determined by the singular field at the main crack tip before ex-
tension, and that applying the J-integral only around the branched crack tip is not appropriate.

6. Conclusions

In this paper, using the Stroh formalism, a mixed electric boundary value problem for a two-dimensional
piezoelectric crack problem is solved. The results suggest that the stress intensity factors are identical
to those of conventional impermeable or conducting cracks. The electric field and electric displace-
ment exhibit singularity at crack tips but also at the junctures between the impermeable parts and
conducting parts. The electric field ahead of the crack tip transits from the standard conducting crack to the
impermeable crack as b/a changes from zero to unit. For E5° loading, increasing b/a is helpful to diminish
the electric field and electric displacement concentration near the crack tip irrespective of the poling di-
rection; for E5° loading, the longer the conducting length, the smaller the electric field and electric dis-
placement concentration near the crack tip. The research about J-integral shows that when the distance
between two singular points is less than the fracture characteristic length, J is an appropriate control
parameter for fracture, otherwise, § > 7y, J! is an appropriate one. As a first step for future study of the
complicated electric boundary problem involved in the experiment, the model proposed in the present
paper still awaits experimental tests and needs further investigation to meet the experimental situation more
precisely.
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Appendix A. Some definite integrals

X (¢ X (¢
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Appendix B. Material constants and remote electro-mechanical loading relations

1451

The material constants for PZT-4 whose poling axis is along x;-axis are listed as follows (Park and Sun,

1995):
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en =139, ¢3=113, ¢, =778, c13=743, cy4 =256 (GPa),
ey =138, e3 = —698, e;5=134(Cm?),
K11 =6.00 x 107, k33 =547 x 107 (C°N"'m™2).
The numerical forms of the matrix H and Im[Y] in Eq. (75) are:
CL=5.68 x 10" N/m?, Cr=5.72x10" N/m? ¢ =7.62x10""2 N/m?,
e=4515C/m?*, (=188x102 C/m?, &= -572x10" F/m.
In practice an application of remote electric displacement loading is more difficult than an application of

electric field, so in this paper we express all quantities in terms of E7° instead of D°. When the poling axis is
directed along the x,-axis, the relation between the remote electric displacement and the electric field are:

Dy =1.306 x 107°E +5.25 x 107%655 (C/m?),

8 10 10 2 (Bl)
Dy = 1.003 x 10-5EF — 1783 x 10163 + 2398 x 101935 (C/m?).

The relation between the remote electric displacement and the electric field for the poling direction along
the x,-axis are

D =1.003 x 107 E5 — 1.783 x 107965 +2.398 x 107655 (C/m?),

0 8 10 oo 2 (B.?_)
DY =1.306 x 10°°E° 4+ 5.25 x 10795 (C/m?),

which can be obtained by a coordinate transformation rule.

Appendix C. The reasonableness of the impermeable conditions on the boundary of the elliptic cavity

According to Gao and Fan (1999); Kuang and Ma (2002), the exact solution of a transversely isotropic
cavity filled air is

1 1 Zy
a+ip,b V22— (@) |
where C, is the function of oy and p,, [, and [, are functions of oy and the sizes of ellipse, f8,, is the
function of p, and material constants. Their expressions can be found in Gao and Fan (1999) and Kuang

and Ma (2002), and are omitted here. Only /5 is related to electric displacements D{ and D in the elliptic
cavity with air and its expression is

1 e
Iy = 5 [a(DF — D) — ib(D}* — DY)
Due to the permittivity & of air is very small compared to that of the dielectric, so DY — DS ~ D5°,
D — D§ = D°. If D* = D} = 0, then /5 is very small compared with /, and /,. Therefore, the exact jointed
conditions at the boundary of ellipse filled with air can be approximated by an impermeable boundary
condition.

F;(Zx) = Coc + (ﬁalll + ﬁa2l2 + ﬁ13l3)
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