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Abstract

In this paper, a mixed electric boundary value problem for a two-dimensional piezoelectric crack problem is pre-

sented, in the sense that the crack face is partly conducting and partly impermeable. By the analytical continuation

method, the unknown electric charge distributions on the upper and lower conducting crack faces are reduced to two

decoupled singular integral equations and then these two equations are converted into algebraic equations to find the

full field solution. Though the results suggest that the stress intensity factors at the crack tip are identical to those of

conventional piezoelectric materials, but the electric field and electric displacement are related to the electric boundary

conditions on the crack faces. The electric field and electric displacement are singular not only at crack tips but also at

the junctures between the impermeable part and conducting parts. Numerical results for the variations of the electric

field, electric displacement field and J -integral with respect to the normalized impermeable crack length are shown.
Some discussions for the energy release rate and the J -integral are made.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to their intrinsic electro-mechanical couplings, piezoelectric ceramics are widely used as sensors,

transducers and actuators etc. Defects, such as cracks, dislocations, and voids, inevitably exist during the

manufacturing processes or in operation under high applied electro-mechanical loadings. Therefore, the

reliability problem emerges and requires a better understanding of the integrity of these materials chosen

for engineering devices.

Recently, researches on piezoelectric materials are booming. Although many efforts have been devoted

to both of the linear and non-linear analysis of fracture mechanics of piezoelectric materials, the influence

of the applied electric field on facture is still not well understood. Parton (1976) first investigated the
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fracture problem in piezoelectric materials and in his paper the crack was taken to be a permeable slit, i.e.

the electric potential and normal component of the electric displacement were continuous across the crack

surface. Sosa and Khutoryansky (1996), Gao and Fan (1999) obtained the exact solution of the plane

problem for an infinite piezoelectric media with an elliptical cavity under the permeable boundary condi-
tion. Based on the solution of Gao and Fan (1999), Huang and Kuang (2000) obtained an asymptotic

electro-elastic field near a blunt crack end in a transversely isotropic piezoelectric material, Kuang and Ma

(2002) pointed out that for the problem containing a elliptic cavity filled by air can be approximated by an

impermeable problem on the elliptic boundary (Appendix C). Deeg (1980), Pak (1990, 1992), addressed the

plane and anti-plane fracture problems of piezoelectric materials and obtained a closed form solution of the

stress field and electric displacement near the crack tip under the impermeable electric boundary condition.

Suo et al. (1992) and Suo (1993) predicted that in the linear frame of piezoelectric theory the electric field

always retards the crack propagation for the impermeable electric boundary condition and promotes it
under the conducting condition. The mechanical energy release rate (ERR) proposed by Park and Sun

(1995) and Jiang and Sun (2001) is used to explain their experiment results, and the results predicted by

their theory fit their experimental results well. Gao et al. (1997) and Fulton and Gao (1997) developed

a strip electrical saturation model and the local ERR was used to explain the effect of the applied elec-

tric field on fracture. Ru (1999a) extended the strip saturation model to study the conducting crack

with limited electrical polarization. Zhu and Yang (1997) and Yang and Zhu (1998) investigated the

shielding effects by the switch wake of the ferroelectric domain behind the crack. However, none of the

developed models can fully explain the effect of the electric field observed in experiments which seems
contradicting with each other (Park and Sun, 1995; Wang and Singh, 1997; Fu and Zhang, 1998; Fu and

Zhang, 2000).

The mixed boundary value problem can be found in some cases, such as that the electrolyte is not fully

filled inside the crack, the distributed internal piece-like separated electrodes in damage detection problem,

interdigitated electrodes, thin layer conducting surface becomes discontinuous during fabrication or by

electro-mechanical fatigue damage etc. Lynch et al. (1995a,b) and Lynch (1998) found that the electric

boundary conditions used in the existing theories are not identical to those of observed in experiments and

they stated that whether discharge of the air within the crack happens is crucial in determining the electric
field near the crack tip. Breakdown of the dielectric inside the crack was actually observed in their ex-

periments. Zhang et al. (2000, 2001) also pointed out that the local partial electric discharge may make an

impermeable crack conduct electrically and change the failure behavior of piezoelectric materials. Recently,

Huang and Kuang (2001) conducted an analysis on a non-ideal piezoelectric crack problem using the

permeable electric boundary condition. In that model, crack tips are mathematically sharp while in the

middle of the crack there is a small gap between the opposing crack faces. They found that there is a very

high electric field near the tip within the flaw which may cause the air near the crack tip within the flaw to

break down. The discharge process at the gap near the crack tip is a very complex dynamic process. When
the electric field obtains a critical value, the air breaks down and becomes conducting gas, but after air

breakdown, the electric field diminishes rapidly and the air becomes insulating gas again. In the usual case,

this process will be repeated and form discontinuous electric sparks. As a first approximation and quali-

tatively disscussion, the discharged dielectric within the crack can be modeled by conductors. The electric

condition near the crack tip is taken to be conducting, and in the middle of the crack, is taken to be im-

permeable due to its opening. So, this consideration also leads to a mixed boundary value problem.

In this paper, the mixed electric boundary value problem for a two-dimensional piezoelectric crack is

solved. The complex continuation method (Muskhelishvili, 1953) will be employed to solve the full electro-
mechanical field. This paper is arranged as follows. In Section 2 we review the basic equations for the

generalized piezoelectric plane problem. The derivation of the analytical solutions is elaborated in Section 3.

In Section 4, the expressions of the electro-mechanical crack tip field are given and numerical calculations

for the variations of the electric field and the electric displacement field with respect to the normalized
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impermeable crack length are illustrated. Numerical computation for the J -integral and some discussions
on the ERR are presented in Section 5. Finally conclusions are made for the paper.

2. Basic equations

In a fixed rectangular coordinate system ðx1; x2; x3Þ, the constitutive equations for linear piezoelectrics of
the second kind can be written as

rij ¼ cijkluk;l þ elij/;l; Di ¼ eikluk;l � jil/;l ði; j; k; l ¼ 1; 2; 3Þ; ð1Þ

where repeated Latin indices mean summation and a comma stands for partial differentiation. cijkl are the
elastic stiffnesses under constant electric field, eikl the piezoelectric stress constants, and jil the permittivity
under constant strain field. rij; uj;Di;Ei, and / are stress, displacement, electric displacement, electric field
and electric potential respectively. Here we only address the general two-dimensional problem in ðx1; x2Þ-
plane, i.e. all variables are constant along x3 axis. (In this paper notations x1 ¼ x and x2 ¼ y will be adopted
simultaneously.) Following Suo (1993), Chung and Ting (1996) and Kuang and Ma (2002) the generalized

displacement solution can be obtained by considering a linear combination of four complex analytical

functions,

u ¼ uj
/

� �
¼ 2Re

X4
a¼1

aafaðzaÞ; uJ ¼ 2Re
X4
a¼1

aJafaðzaÞ: ð2Þ

The uppercase Latin subscript and the Greek subscript all range from 1 to 4, the lowercase Latin subscript

from 1 to 3. Note in this paper that implicit summation convention is used only for Latin indices, while for
Greek indices we write the summation symbol explicitly. The generalized stress function U with the

components Ujðj ¼ 1; 2; 3Þ of the resultant force and the electric displacement flux U4 on an arc, can be
represented as,

UðzÞ ¼ 2Re
X4
a¼1

bafaðzaÞ; UJðzÞ ¼ 2Re
X4
a¼1

bJafaðzaÞ; ð3Þ

where za ¼ xþ pay. The eigenvalues pa and the eigenvectors aa can be obtained from the following equation:

Q
�

þ ðRþ RTÞp þ Tp2
�
a ¼ 0; ð4Þ

where

Q ¼ QE e11

eT11 �j11

" #
; R ¼ RE e21

eT21 �j12

" #
; T ¼ TE e22

eT22 �j22

" #
;

QEik ¼ ci1k1; REik ¼ ci1k2; T Eik ¼ ci2k2; ðeijÞs ¼ eijs;

ð5Þ

and the eigenvectors ba can be obtained from the following relations:

ba ¼ ðRT þ paTÞaa ¼ �ðQþ paRÞaa=pa: ð6Þ
Let FaðzaÞ ¼ f 0

aðzaÞ, the generalized stresses are as follows:

R2JðzÞ ¼
r2j
D2

� �
¼ UJ ;1 ¼ 2Re

X4
a¼1

bJaFaðzaÞ
" #

;

R1JðzÞ ¼
r1j
D1

� �
¼ �UJ ;2 ¼ �2Re

X4
a¼1

bJapaFaðzaÞ
" # ð7Þ
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and the electric fields are

E1 ¼ �u4;1 ¼ �2Re
X4
a¼1

a4aFaðzaÞ;

E2 ¼ �u4;2 ¼ �2Re
X4
a¼1

a4apaFaðzaÞ:
ð8Þ

For stable materials eigenvalues cannot be real (Suo et al., 1992; Ting, 1996). The eigenvalues pa are

assumed to be distinctive in this paper.

3. Solutions

Consider a crack of length 2a in an infinite piezoelectric material subjected to uniform remote electro-
mechanical loadings R1

2J ;R
1
1J . The crack faces are assumed to be traction-free and there is no external

charge on the impermeable part and the electric potential on the conducting crack surfaces is taken to be

zero. Let line L1 and L3 denote the electrically conducting parts and L2 denote the impermeable part (see
Fig. 1). The length of L2 is 2b and the length of L1 and L3 is set to be equal to d ¼ a� b for easy analysis.
The electro-mechanical boundary conditions on the crack faces are

r�
2jðx; 0Þ ¼ 0; E�

1 ðx; 0Þ ¼ 0; x 2 L1 [ L3; for the conducting parts; ð9Þ

r�
2jðx; 0Þ ¼ 0; D�

2 ðx; 0Þ ¼ 0; x 2 L2; for the impermeable part: ð10Þ

The superscripts ‘‘þ’’ and ‘‘�’’ represent the value on the upper and lower crack surfaces respectively. The
single valued conditions of generalized displacement on the crack faces requireZ

L
uþj;xðx; 0Þ
h

� u�j;xðx; 0Þ
i
dx ¼ 0;

Z
L2

/þ
;xðx; 0Þ

h
� /�

;xðx; 0Þ
i
dx ¼ 0; ð11Þ

and it is also assumed that there is no extra free charge within the conducting parts, i.e.Z
L1

Dþ
y ðx; 0Þ

h
� D�

y ðx; 0Þ
i
dx ¼ 0;

Z
L3

Dþ
y ðx; 0Þ

h
� D�

y ðx; 0Þ
i
dx ¼ 0: ð12Þ

Employing Eqs. (2), (3), (7), (8) and the relation F �
a ðxÞ ¼ F

þ
a ðxÞ, F þ

a ðxÞ ¼ F
�
a ðxÞ, Eqs. (9)–(12) can be re-

written asX
a

bjaF �
a ðxÞ þ

X
a

�bbjaF
�
a ðxÞ ¼ 0; x 2 L1 [ L3; ð13Þ

Fig. 1. Crack configuration.
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X
a

a4aF �
a ðxÞ þ

X
a

�aa4aF
�
a ðxÞ ¼ 0; x 2 L1 [ L3; ð14Þ

X
a

bJaF �
a ðxÞ þ

X
a

�bbJaF
�
a ðxÞ ¼ 0; x 2 L2: ð15Þ

Z
L

X
a

Re aja F þ
a

��
� F �

a

��
dx ¼ 0; ð16Þ

Z
L2

X
a

Re a4a F þ
a

��
� F �

a

��
dx ¼ 0; ð17Þ

Z
L1

X
a

Re b4a F þ
a

��
� F �

a

��
dx ¼ 0; ð18Þ

Z
L3

X
a

Re b4a F þ
a

��
� F �

a

��
dx ¼ 0: ð19Þ

From the electro-mechanical loading conditions Eqs. (13)–(15) on the crack faces, we have

Rþ
2J ðx; 0Þ þ R�

2J ðx; 0Þ ¼
X

a

bbJaF þ
a ðxÞ þ �bbJaF

þ
a ðxÞ þ �bbJaF

�
a ðxÞ þ bJaF �

a ðxÞc ¼ s1ðxÞd4J ; ð20Þ

Rþ
2J ðx; 0Þ � R�

2J ðx; 0Þ ¼
X

a

bbJaF þ
a ðxÞ � �bbJaF

þ
a ðxÞ þ �bbJaF

�
a ðxÞ � bJaF �

a ðxÞc ¼ s2ðxÞd4J ; ð21Þ

where

s1ðxÞ ¼
0; x 2 L2
Dþ
2 þ D�

2 ; x 2 L1 [ L3

�
; s2ðxÞ ¼

0; x 2 L2
Dþ
2 � D�

2 ; x 2 L1 [ L3

�
; ð22Þ

which are unknown functions to be determined. Using the analytic continuation method, Eqs. (20) and (21)

can be solved as a non-homogenous Riemann–Hilbert problem (Muskhelishvili, 1953). We getX
a

bbJaFaðzÞ þ �bbJaF aðzÞc ¼ XaðzÞS1J ðzÞ þ XaðzÞ b0Jð þ b1J zÞ;X
a

bJaFaðzÞ
h

� �bbJaF aðzÞ
i
¼ S2J ðzÞ þ ib2J ;

ð23Þ

where b0J , b1J and b2J are real numbers and

S1J ðzÞ ¼
1

2pi

Z
L

s1ðtÞd4J
ðt � zÞXþ

a ðtÞ
dt; S2J ðzÞ ¼

1

2pi

Z
L

s2ðtÞd4J
t � z

dt; ð24Þ

which are analytic on the whole plane except on the crack faces. Note that in the above equations a

subscript a for z is dropped and a replacement should be made once the solution for FaðzÞ obtained. XaðzÞ
and two other functions XbðzÞ and XabðzÞ which will appear later are shown as:

XaðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p ; XbðzÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � b2

p ; XabðzÞ ¼ XaðzÞXbðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � b2
p : ð25Þ

The branches of the functions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � b2

p
are taken to be z as z approaches infinity, therefore the

values of XabðzÞ, XaðzÞ, XbðzÞ on the crack upper and lower crack faces are:
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X�
abðxÞ ¼

�iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ; Xþ
b ðxÞ ¼ X�

b ðxÞ ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ; x 2 L1;

Xþ
abðxÞ ¼ X�

abðxÞ ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � x2
p ; X�

b ðxÞ ¼
�iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

p ; x 2 L2;

X�
abðxÞ ¼

�iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ; Xþ
b ðxÞ ¼ X�

b ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � b2
p ; x 2 L3;

X�
a ðxÞ ¼

�iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ; x 2 L:

8>>>>>>>>>>><>>>>>>>>>>>:
ð26Þ

According to the Plemelj formulas (Muskhelishvili, 1953), from Eq. (24), we can get

Sþ1J ðxÞ þ S�1J ðxÞ ¼
1

pi

Z
L

s1ðtÞd4J
ðt � xÞXþ

a ðtÞ
dt; Sþ1J ðxÞ � S�1J ðxÞ ¼

s1ðxÞd4J
Xþ
a ðxÞ

; ð27Þ

Sþ2J ðxÞ þ S�2J ðxÞ ¼
1

pi

Z
L

s2ðtÞd4J
t � x

dt; Sþ2J ðxÞ � S�2JðxÞ ¼ s2ðxÞd4J : ð28Þ

With Eq. (23) we have

FaðzÞ ¼
1

2
b�1aJ ½XaðzÞS1JðzÞ þ S2J ðzÞ þ XaðzÞðb0J þ b1J zÞ þ ib2J �; ð29Þ

where b�1aJ is the element of ½bJa�
�1
. Recalling the remote loading condition, we have

R1
2J ¼ 2Re

P4

a¼1 bJaFað1Þ
h i

¼ Re b1J þ ib2J½ � ¼ b1J

R1
1J ¼ �2Re

P4

a¼1 bJapaFað1Þ
h i

¼ �Re
P4

a¼1 bJapab�1aK b1K þ ib2Kð Þ
h i

8<: ð30Þ

so the unknown constants b1J , b2J can be obtained (Huang and Kuang, 2001). With Eq. (29), one arrives at:

F þ
a ðxÞ þ F �

a ðxÞ ¼ 1
2
b�1aJ Xþ

a ðxÞ Sþ1JðxÞ
��

� S�1J ðxÞ
�
þ Sþ2J ðxÞ þ S�2J ðxÞ þ 2ib2J

�
;

F þ
a ðxÞ � F �

a ðxÞ ¼ 1
2
b�1aJ Xþ

a ðxÞ Sþ1JðxÞ
��

þ S�1J ðxÞ
�
þ Sþ2J ðxÞ � S�2J ðxÞ þ 2Xþ

a ðxÞðb0J þ b1J xÞ
�
:

ð31Þ

After an algebraic manipulation for Eq. (14), we have

Re
X

a

ba4a F þ
a ðxÞ

�
þ F �

a ðxÞ
�
c ¼ 0; x 2 L1 [ L3; ð32Þ

Re
X

a

ba4a F þ
a ðxÞ

�
� F �

a ðxÞ
�
c ¼ 0; x 2 L1 [ L3: ð33Þ

According to Suo et al. (1992), define YIJ ¼
P

a iaIab
�1
aJ and HIJ ¼ YIJ þ Y IJ , the former is a Hermite matrix

and the latter a real symmetric matrix. The dimensions of YIJ can be found in Suo et al. (1992). We haveX
a

RebaJa F þ
a

�
� F �

a

�
c ¼

X
a

X
b

Re aJab�1aKbKb F þ
b

�j
� F �

b

�k
¼
X

a

X
b

Im iaJab�1aKbKb F þ
b

�h
� F �

b

�i
¼
X

a

Im YJKbKa F þ
a

��
� F �

a

��
ð34Þ

With Eqs. (31)–(33), one reaches

Im Y4JbXþ
a ðxÞðSþ1J ðxÞ

�
� S�1J ðxÞÞ þ Sþ2J ðxÞ þ S�2J ðxÞ þ 2ib2Jc

�
¼ 0; x 2 L1 [ L3; ð35Þ
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Im Y4JbXþ
a ðxÞðSþ1J ðxÞ

�
þ S�1J ðxÞÞ þ Sþ2JðxÞ � S�2J ðxÞ þ 2Xþ

a ðxÞðb0J þ b1J xÞc
�
¼ 0; x 2 L1 [ L3: ð36Þ

Invoking Eqs. (27) and (28), it is not difficult to show that

Im Y44 s1ðxÞ
��

þ 1

pi

Z
L

s2ðtÞ
t � x

dt
�
þ 2iY4Jb2J

�
¼ 0; x 2 L1 [ L3: ð37Þ

Im Y44Xþ
a ðxÞ

1

pi

Z
L

s1ðtÞ
ðt � xÞXþ

a ðtÞ
dt

�
þ 2Y4JXþ

a ðxÞðb0J þ b1J xÞ
�

¼ 0; x 2 L1 [ L3: ð38Þ

Ru (1999b) showed that

Y44 � Y 44 ¼ 0 or Im½Y44� ¼ 0: ð39Þ
Hence the integral equations (37) and (38) for the unknown functions s1ðxÞ and s2ðxÞ are decoupled,

H44
pi

Z
L

s2ðtÞ
t � x

dt þ 2iH4Jb2J ¼ 0; x 2 L1 [ L3: ð40Þ

H44
1

pi

Z
L

s1ðtÞ
ðt � xÞXþ

a ðtÞ
dt þ 2H4J ðb0J þ b1J xÞ ¼ 0; x 2 L1 [ L3: ð41Þ

It is supposed that the electric displacement has the following structure:

D2ðzÞ ¼ Re PabðzÞXabðzÞ½ þ PaðzÞXaðzÞ þ PbðzÞXbðzÞ� þ C; ð42Þ

where polynomials PabðzÞ, PaðzÞ, PbðzÞ are of the order of z2; z and z respectively and C is a real constant. So
from Eqs. (42), (22), (26), we get

s2ðxÞ ¼ 2i c0 þ c1xþ c2x
2ð ÞXþ

abðxÞ þ 2i c3 þ c4xð ÞXþ
a ðxÞ

s1ðxÞ ¼ 2 c5 þ c6xð ÞXþ
b ðxÞ þ 2C

(
x 2 L1 [ L3; ð43Þ

where ci, i ¼ 0–6 are real constants. Substituting the expressions of s1ðxÞ, s2ðxÞ into the singular integral
equations (40) and (41), we get

H44
pi

Z
L1[L3

ðc0 þ c1t þ c2t
2ÞXþ

abðtÞ þ c3 þ c4tð ÞXþ
a ðtÞ

t � x
dt þ H4Jb2J ¼ 0; x 2 L1 [ L3; ð44Þ

H44
1

pi

Z
L1[L3

2ðc5 þ c6tÞXþ
b ðtÞ þ 2C

ðt � xÞXþ
a ðtÞ

dt þ 2H4Jðb0J þ b1J xÞ ¼ 0; x 2 L1 [ L3: ð45Þ

Now the solutions for the integral equations are reduced to find the seven unknown constants ci, i ¼ 0–6.
Using the singular integrals listed in Appendix A, we have

H44
pi

� pic2 þ
Z
L1[ L3

c3 þ c4tð ÞXþ
a ðtÞ

t � x
dt

� �
þ H4Jb2J ¼ 0

H44
1

pi
2 � pic5 � pic6xð Þ þ H44

1

pi

Z
L1[ L3

2C
ðt � xÞXþ

a ðtÞ
dt þ 2H4J ðb0J þ b1J xÞ ¼ 0

8>><>>: ; x 2 L1 [ L3:

ð46Þ
In Eq. (46) the integral terms are kept since their closed forms are very complicated. The above polynomials

must hold for all x, therefore we have

C ¼ 0; c3 ¼ c4 ¼ 0; c2 ¼ H4Jb2J=H44; c5 ¼ H4Jb0J=H44; c6 ¼ H4Jb1J=H44: ð47Þ
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Using Eqs. (22), (24), (26)–(28) and integrals in Appendix A, the second term of Eq. (31) can be reduced to

F þ
a ðxÞ � F �

a ðxÞ ¼
b�1aJ X

þ
a ðxÞ � d4J ðc5 þ c6xÞ þ id4J ðc0 þ c1xþ c2x

2ÞXþ
b ðxÞ þ ðb0J þ b1J xÞ½ �; x 2 L1 [ L3

b�1aJ X
þ
a ðxÞ d4J ðc5 þ c6xÞ

Xþ
b ðxÞ
Xþ
a ðxÞ � 1

� �
þ ðb0J þ b1J xÞ

h i
; x 2 L2

8<:
ð48Þ

therefore,X
a

bJaðF þ
a � F �

a Þ ¼ Xþ
a ðxÞ

�
� d4J ðc5 þ c6xÞ þ id4J ðc0 þ c1xþ c2x

2ÞXþ
b ðxÞ þ ðb0J þ b1J xÞ

�
; x 2 L1 [ L3

ð49Þ

and X
a

bJaðF þ
a � F �

a Þ ¼ Xþ
a ðxÞ d4J ðc5

�
þ c6xÞ

Xþ
b ðxÞ
Xþ
a ðxÞ

�
� 1
�
þ ðb0J þ b1J xÞ

�
; x 2 L2: ð50Þ

From Eq. (49) there is

Re
X

a

b4aðF þ
a � F �

a Þ ¼ Rebi c0
�

þ c1xþ c2x
2
�
Xþ
b ðxÞXþ

a ðxÞc; x1 2 L1 [ L3

So, substituting above equation into Eqs. (18) and (19) which represent that there is no extra free charge on
the conducting surface parts, we getZ �b

�a

c0 þ c1xþ c2x
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � x2
p dx ¼ 0;

Z a

b

c0 þ c1xþ c2x
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � x2
p dx ¼ 0: ð51Þ

The above equations give the solutions for c0, c1, c2 as

c1 ¼ 0; c0 ¼ �c2I2=I1; ð52Þ

where

I2 ¼
Z a

b

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p dx; I1 ¼
Z a

b

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p dx; ð53Þ

which are two elliptic integrals and their values can be obtained by numerical integration program or by

looking up the Table of elliptic integral (Gradshteyn and Ryzhik, 1980). With Eqs. (34), (49), (50), we haveX
a

RebaJaðF þ
a � F �

a Þc ¼ Im Xþ
a ðxÞ

��
� YJ4ðc5 þ c6xÞ þ iYJ4ðc0 þ c2x

2ÞXþ
b ðxÞ þ YJKðb0K þ b1KxÞ

��
¼ Xþ

a ðxÞ
�
� HJ4ðc5 þ c6xÞ þ iðYJ4 � Y J4Þðc0 þ c2x

2ÞXþ
b ðxÞ

þ HJKðb0K þ b1KxÞ
��
2i; x 2 L1 [ L3; ð54Þ

and X
a

RebaJaðF þ
a � F �

a Þc ¼ Im Xþ
a ðxÞ YJ4ðc5

��
þ c6xÞ

Xþ
b ðxÞ
Xþ
a ðxÞ

�
� 1
�
þ YJKðb0K þ b1KxÞ

��
¼ Xþ

a ðxÞ HJ4ðc5
�

þ c6xÞ
Xþ
b ðxÞ
Xþ
a ðxÞ

�
� 1
�
þ HJKðb0K þ b1KxÞ

��
2i; x 2 L2: ð55Þ

Hence, from Eq. (17), which represents the single valued condition of electric potential on the impermeable

surface part, one has
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Z
L2

Xþ
a ðxÞ H44ðc5

�
þ c6xÞ

Xþ
b ðxÞ
Xþ
a ðxÞ

�
� 1
�
þ H4Kðb0K þ b1KxÞ

�
dx ¼ 0: ð56Þ

In the above equation, the integral containing the odd function xXþ
a ðxÞ is identically equal to zero, so the

condition is equivalent toZ
L2

H44c5ðXþ
b ðxÞ

�
� Xþ

a ðxÞÞ þ Xþ
a ðxÞH4Kb0K

�
dx ¼ 0: ð57Þ

Invoking the relation c5 ¼ H4Jb0J=H44 in Eq. (47), we getZ
L2

H44c5X
þ
b ðxÞdx ¼ 0: ð58Þ

Hence we have

c5 ¼ H4Kb0K=H44 ¼ 0: ð59Þ

Using Eqs. (49) and (50), the displacement single valued condition Eq. (16) is rewritten asZ
L1[L3

Xþ
a ðxÞ

�
� Hj4ðc5 þ c6xÞ þ iðYj4 � Y j4Þðc0 þ c2x

2ÞXþ
b ðxÞ þ HjKðb0K þ b1KxÞ

�
dx

þ
Z
L2

Xþ
a ðxÞ

�
� Hj4ðc5 þ c6xÞ þ HjKðb0K þ b1KxÞ

�
dx ¼ 0: ð60Þ

With Eq. (52), it is known thatZ
L1[L3

Xþ
a ðxÞðc0 þ c2x

2ÞXþ
b ðxÞdx ¼ 0:

So Eq. (60) can be further simplified to beZ
L1[L3

Xþ
a ðxÞ

�
� Hj4c6xþ HjKðb0K þ b1KxÞ

�
dxþ

Z
L2

Xþ
a ðxÞ

�
� Hj4c6xþ HjKðb0K þ b1KxÞ

�
dx

¼ HjKb0K

Z
L1[L3

Xþ
a ðxÞdxþ HjKb0K

Z
L2

Xþ
a ðxÞdx ¼ HjKb0K

Z
L
Xþ
a ðxÞdx ¼ 0: ð61Þ

Hence we have

HjKb0K ¼ 0; ð62Þ

together with c5 ¼ H4Kb0K=H44 ¼ 0 and knowing H is a non-singular matrix, one arrives at

b0K ¼ 0: ð63Þ

Now all the unknown constants are solved. With Eqs. (24) and (43) and the integrals listed in the Appendix

A, we have

S1J ðzÞ ¼
d4J
2pi

Z
L1[L3

2ðc5 þ c6tÞXþ
b ðtÞ

ðt � zÞXþ
a ðtÞ

dt ¼ d4Jc6zðXbðzÞ=XaðzÞ � 1Þ; ð64Þ

S2J ðzÞ ¼
d4J
2pi

Z
L1[L3

2iðc0 þ c1t þ c2t
2ÞXþ

abðtÞ
t � z

dt ¼ d4J iðc0
�

þ c2z
2ÞXabðzÞ � ic2

�
: ð65Þ
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Therefore, the field solution Eq. (29) can be written as

FaðzÞ ¼
1

2
b�1a4 c6zðXbðzÞ
�

� XaðzÞÞ þ iðc0 þ c2z
2ÞXabðzÞ � ic2

�
þ 1
2
b�1aJ ½b1J zXaðzÞ þ ib2J �: ð66Þ

After a substitution of the solution Eq. (66) into Eqs. (7) and (8) and (11) and (12), the boundary conditions

are all satisfied. Hence the correctness of Eq. (66) is proved. Let the impermeable length b equal to zero or a,
the limit analysis reveals that c0 ¼ 0 for b ¼ 0 and c0 ¼ �a2c2 for b ¼ a, so it is not difficult to show that the
present solution recovers the conventional impermeable crack and conducting crack solutions.

4. Crack tip fields

In this section, we devote our attention to the near-tip crack tip field. In the following, without losing

generality, we only discuss the right crack tip field. As we know, an impermeable crack intensifies an electric

field applied perpendicular to the crack, but does not perturb a field parallel to the crack; conversely, a

conducting crack intensifies an electric field applied parallel to the crack, but not a field perpendicular to it

(Lynch et al., 1995a). The electric displacement intensity factor for the impermeable crack is defined based

on D2ðx; 0Þ near the crack tip, but the electric field intensity factor for the conducting crack is on E1ðx; 0Þ, so
we only give the expressions of E1ðx; 0Þ and D2ðx; 0Þ directly ahead of the crack tip.
Introduce two polar coordinates (r; h) and (rb; hb) with their origins located at points (x ¼ a; 0) and

(x ¼ b; 0) (where singular fields may be located) respectively. The electro-mechanical field directly ahead of
the crack tip on the axis can be obtained after substitution of Eq. (66) into Eqs. (7) and (8)

r2jðxÞ ¼
b1jxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p ¼
r1
2j xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ; ð67Þ

D2ðxÞ ¼
H4jr1

2j x

H44

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p
�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
�
þ D1

2 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ; ð68Þ

E1ðxÞ ¼
b2JH4J I2=I1 � x2ð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p � r1
2j Im½Y4j�

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p : ð69Þ

From Eq. (67), it is always possible to define stress intensity factors

KII ¼
ffiffiffiffiffiffi
pa

p
r1
21; KI ¼

ffiffiffiffiffiffi
pa

p
r1
22; KIII ¼

ffiffiffiffiffiffi
pa

p
r1
23; ð70Þ

which is identical to the conventional stress intensity factors for anisotropic materials. However, under the

present mixed boundary condition, the near-tip electric field and electric displacement field are complicated.

The crack extension is determined by the K-field near the tip, but sometime we also assume that the failure

is determined by the maximum tension stress at a distance x ¼ r0 (Kuang, 1982) ahead of the crack tip and
this is also valid for a non-ideal crack and two singular points are very near each other. According to this

fact, the electric field and electric displacement near the crack tip x ¼ a will be classified into three different
cases by the relative magnitude of d ¼ a� b and r0.

Case 1: d � r0, that is to say the singular field at x ¼ b cannot influence the singular field at the physical
crack tip. In this case the electric displacement and electric field intensity factors are identical of those of the

conducting crack.

KD ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
D2ðr; 0Þ ¼ �H4jr1

2j

ffiffiffiffiffiffi
pa

p
=H44; ð71Þ

KE ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
E1ðr; 0Þ ¼

b2JH4J
ffiffiffi
p

p
I2=I1 � a2ð Þ

2
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p � r1
2j

ffiffiffiffiffiffi
pa

p
Im½Y4j�: ð72Þ
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Case 2: d � r0, which means the point x ¼ b and the point x ¼ a can be treated as one point. Hence the
intensity factors are identical to those of the completely impermeable crack.

KD ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
D2ðr; 0; Þ ¼ D1

2

ffiffiffiffiffiffi
pa

p
: ð73Þ

KE ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
E1ðr; 0Þ ¼ �

ffiffiffiffiffiffi
pa

p
r1
2j Im½Y4j�: ð74Þ

Case 3: d � r0, i.e. the singular field at x ¼ b interacted with the singular field at the physical crack tip but
they cannot be treated as one point as in Case 2. In this case, an electric field intensity factor and electric

displacement intensity factor (if defined in the same manner as usual) will depend on d and r. The intensity
factors transit from impermeable ones (Case 2) to conducting ones (Case 1) as d=r0 � 1 shifts to d=r0 � 1.

From the above discussion it is obvious that the electric intensity factors at the crack tip are strongly

dependent on the boundary condition at the crack surface. In some cases the discontinuous electric spark

occurs in the air gap near the crack tip, so the electric intensity factor varies between Cases 2 and 1 or 3.
This phenomenon may be related to the electric fatigue damage.

To reveal the structure of the electric field ahead of the crack tip, we consider two special poling di-

rections for a transversely piezoelectric material with its poling axis aligned with the x2- and the x1-axis
respectively.

4.1. Crack tip fields when the poling direction is aligned with the x2-axis

When the poling direction is aligned with the x2-axis, we have

H ¼ 2
1=CL 0 0

0 1=CT 1=e
0 1=e �1=e

0@ 1A; Im½Y� ¼
0 w �f
�w 0 0

f 0 0

0@ 1A; ð75Þ

where CL, CT, e, e, w, and f are some positive material constants for stable materials (see Lothe and Barnett
(1976), Suo et al. (1992) and Ru (1999c)). The dimensions of components in Y are given in Suo et al. (1992),
and 1=CL, 1=CT, w have the dimensions of [elasticity]�1, i.e. m2/N, 1=e, f have the dimension of [piezo-
electricity]�1, i.e. m2/C, and e has the dimension of permittivity F/m. Here, we adopt the convention by Ru
(1999c), which the third column and the third row of the matrices have been deleted and the subscripts used

for these 3� 3 matrices are 1, 2 and 4. From Eqs. (68), (69), (75), we have

D2ðxÞ ¼
er1
22x
e

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p
�
þ D1

2

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ; ð76Þ

E1ðxÞ ¼
x2 � I2=I1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � b2
p b24

2e
� f

r1
21xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p : ð77Þ

For a PZT-4 material whose material constants and the electro-mechanical loading relations are listed in

the Appendix B, the numerical forms of the above two equations are

D2ðxÞ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � b2
p 10:03E1

2

�
� 0:178r1

11

�
� 10�9 þ r1

22x
25:33ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
�

� 1:353ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p
�
� 10�11; ð78Þ

E1ðxÞ ¼
x2 � I2=I1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � b2
p 0:0188r1

21

�
þ E1

1

�
� 0:0188 r1

21xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p : ð79Þ

Letting b ¼ 0 and a, the values for I2=I1 are 0 and a2 respectively, so the crack tip electric field and electric
displacement can recovered for the completely conducting and impermeable crack. From Eq. (79), we can

see that r1
21 can induce a singular electric field E1 ahead of the crack tip but r1

22 cannot do.

Z. Huang, Z.-B. Kuang / International Journal of Solids and Structures 40 (2003) 1433–1453 1443



To show the near-tip electric field and electric displacement variations with respect to the ratio b=a,
we consider the electric field and electric displacement at the point x=a ¼ 1þ ðr=aÞ ¼ 1þ 10�5, y ¼ 0 under
the following two loading conditions: (a) only r1

22 ¼ 1 MPa, E1
1 ¼ 0:1 MV/m are applied and (b) only

r1
22 ¼ 1 MPa, E1

2 ¼ 0:1 MV/m are applied. For clarity, we define some normalized quantities appeared
in the Figs. 2–5, eDD2j ¼ ffiffiffiffiffiffiffi

2pr
p

D2ðaþ r; 0Þ=ð ffiffiffiffiffiffipa
p

j11E1
j Þ, eEE1j ¼ ffiffiffiffiffiffiffi

2pr
p

E1ðaþ r; 0Þ=ð ffiffiffiffiffiffipa
p

E1
j Þ, eKKDj ¼ KD=

ð ffiffiffiffiffiffipa
p

j11E1
j Þ and eKKEj ¼ KE=ð

ffiffiffiffiffiffi
pa

p
E1
j Þ where j indicates the corresponding remote electric loading and KD

and KE are defined by Eqs. (71) and (72) respectively. Figs. 2(a), (b) and 3 give the variations of eDD21, eEE11 andeDD22 with respect to b=a respectively. For a completely impermeable or a completely conducting crack, these
values are the corresponding normalized intensity factors. However, in the present model, they are asso-

ciated to the ratio b=a. For loading condition (b), E1ðx; 0Þ in front of the crack is identically vanishing and it
will not be plotted.

It can be seen that eKKDj is almost equal to eDD2j for b=a ranging from 0 to 0.9 (Figs. 2(a) and 3). Deviations
are observed in the interval for b=a ranging from 0.9 to 1 where the singular fields at (x ¼ a; 0) and (x ¼ b; 0)
interacting with each other. The plots for eEE11 and eKKE1 are indiscernible (Fig. 2(b)). This is because the first
term in Eq. (77) transits gradually to the impermeable case, not as sharply as the case for D2ðx; 0Þ. So the
approximation formula of Eq. (72) is exact for most b=a. This conclusion also holds when the poling axis is
aligned with the x1-axis discussed in Section 4.2.

4.2. Crack tip fields when the poling direction is aligned with the x1-axis

When the poling direction aligned with the x1-axis, the H and Im[Y] matrices are

H ¼ 2
1=CT 0 1=e
0 1=CL 0

1=e 0 �1=e

0@ 1A; Im½Y� ¼
0 w 0

�w 0 f
0 �f 0

0@ 1A: ð80Þ

Fig. 2. For the remote loading r1
22 ¼ 1 MPa, E1

1 ¼ 0:1 MV/m and x2 being the poling axis, (a) variations of the eKKD1 and eDD21 with
respect to b=a; (b) variations of the eKKE1 and eEE11 with respect to b=a.

1444 Z. Huang, Z.-B. Kuang / International Journal of Solids and Structures 40 (2003) 1433–1453



So

D2ðxÞ ¼
er1
22x
e

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p
�
þ D1

2

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p ; ð81Þ

Fig. 3. For the remote loading r1
22 ¼ 1 MPa, E1

2 ¼ 0:1 MV/m and x2 being the poling axis, variations of the eKKD2 and eDD22 with respect to
b=a.

Fig. 4. For the remote loading r1
22 ¼ 1 MPa, E1

1 ¼ 0:1 MV/m and x1 being the poling axis, variations of the eKKE1 and eEE11 with respect to
b=a.
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E1ðxÞ ¼
x2 � I2=I1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � b2
p b24

2e

�
� b21
2e

�
þ f

r1
22xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p : ð82Þ

The numerical expressions of Eqs. (81) and (82) for PZT-4 are as follows:

D2ðxÞ ¼ x
13:056E1

2 þ 0:2717r1
21ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � b2
p

�
þ 0:2533r

1
21ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p

�
� 10�9; ð83Þ

E1ðxÞ ¼
x2 � I2=I1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � b2
p ðE1

1 � 0:0188r1
22Þ þ 0:0188

r1
22xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p : ð84Þ

Eqs. (83) and (84) can also restore the conducting and impermeable crack tip fields when b ¼ 0 and a
respectively as in Section 4.1. Eq. (83) manifests that when the poling axis is along x1; r1

22 can induce a

singular electric field E1 ahead of the crack tip but r1
21 cannot do.

For r1
22 and E

1
1 loading, D2ðx; 0Þ is identically vanishing ahead of the crack tip (Eq. (83)) and will not be

plotted. From Fig. 4, E1ðx; 0Þ decreases as b=a increases from zero to unit. For r1
22 and E

1
2 , E1ðx; 0Þ and

D2ðx; 0Þ both increase as the impermeable length becomes longer (Fig. 5).
Conclusions for the above two subsections are made as follows. The electric field and electric dis-

placement ahead of the crack tip transit from the standard conducting crack to the impermeable crack as
b=a changes from zero to unit; for E1

1 loading, making the conducting length shorter is helpful to diminish

the electric field and electric displacement concentration near the crack tip irrespective of the poling di-

rection; for E1
2 loading, the longer the conducting length, the smaller the electric field and electric dis-

placement concentration near the crack tip.

Fig. 5. For the remote loading r1
22 ¼ 1 MPa, E1

2 ¼ 0:1 MV/m and x1 being the poling axis, (a) variations of the eDD22 with respect to b=a
(eKKD2 ¼ 0); (b) variations of the eKKE2 and eEE12 with respect to b=a.
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5. Energy release rate and the J-integral

It is well known that the crack extension force G is equal to the J -integral

J ¼
Z

C
ðwn1 � niripup;1 � niDi/;1Þds ð85Þ

when the contour C only surrounds the crack tip and the crack faces are free of external charge and traction
(Pak, 1990; Suo et al., 1992). In Eq. (85) w is electric enthalpy. In the present model, the numerical
computation for J -integral will also be classified as that stated in Section 4 for crack tip fields. First, we give
the crack tip ERR by the Irwin closure integral (Suo, 1993)

G ¼ lim
l!0

1

2l

Z l

0

r2jðl
�

� r; 0Þ ujðr; pÞ
�

� ujðr;� pÞ
�
þ E1ðl� r; 0Þ qðr; pÞ½ � qðr;� pÞ; �

�
dr; ð86Þ

where q is the electric charge accumulated on the conducting crack surfaces and l is an infinitesimal crack
extension length. Note that Eq. (86) holds only under the assumption that r is much smaller than the length
d. Hence, we have

G ¼
pr1

2jr
1
2ka

4
Hjk

�
� Hj4H4k

H44

�
� pðI2=I1 � a2Þ2

4aða2 � b2Þ
ðH4Kb2KÞ

2

H44
: ð87Þ

We define the J -integral as J I when C surrounds only the right crack tip (x ¼ a) and J II when C surrounds
two singular points (x ¼ a; 0) and (x ¼ b; 0) (Fig. 6). Our numerical results find that G is always identical to
J I as shown by theoretical analysis. Eq. (87) can be reduced to the completely conducting crack solution,
but it cannot to the completely impermeable crack solution when b ¼ a. The reason is that: when the crack
becomes completely impermeable, two singular points x ¼ a and x ¼ b coincide with each other, but the
ERR defined by Eq. (86), which is equal to J I, does not include the singularity at x ¼ b. To evaluate the
correct ERR for an impermeable crack, the contour C must contain two singularities, and our numerical
and theoretical results find that the ERR obtained from completely impermeable crack (Suo et al., 1992) for

an impermeable crack is definitely equal to J II. In order to study this phenomenon further, we show both
the variations of J I and J II with respect to the ratio b=a. So in the numerical calculation, the half crack

Fig. 6. Illustration of the two integral contours C1 and C2 surrounding one singularity and two singularities respectively.
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length a is assumed to be 0.1 m. Table 1 shows the ERR for the completely conducting and impermeable
cracks for three loading conditions for comparison with the plots of J I and J II.
Figs. 7–10 give the plots of the variations of J I and J II with respect to the ratio b=a. From Figs. 7(a), 9(a)

and 10(a), it is revealed that J I decreases as b=a increasing (i.e. the conducting length decreasing). Fig. 8(a)
shows that under this loading condition, J I is irrespective of the ratio b=a. The ERR for a completely
conducting crack can be obtained from J I (Figs. 7(a)–10(a)) and the ERR for a completely impermeable
crack can be obtained from J II as shown in Figs. 7(b)–10(b) when b=a approaches to unit. These figures also
show that the difference between J I and J II is obvious. For b=a > 0:9, we see in Figs. 8(b) and 10(b), when
E1
2 is applied J

II decreases with increasing b/a, but Figs. 7(b) and 9(b) show that when E1
1 is applied b=a is

no influence on J II. This means that as the impermeable length increases the impermeable singularity at
x ¼ b comes into effect. It can be concluded from Figs. 7–10 that as the impermeable length increases the
ERR decreases. It is also noted that for classical conducting crack J ¼ G > 0 and in our case J is the lower
limit of J I, so always J I > 0. For classical insulating crack J may be negative and in our case J is the upper
limit of J II, so J II may be positive or negative. In practical experiments the crack tip condition is very
important. If the air gap behind the insulation crack tip is breakdown then the J value increases and may
give rise to damage. The spark phenomenon may lead to fatigue.

Table 1

Table for the ERR for the completely insulating and conducting cracks with the half crack length a ¼ 0:1 m
Loading condition r1

22 ¼ 1 MPa; E1
1 ¼ 0:1 MV/m r1

22 ¼ 1 MPa; E1
2 ¼ 0:1 MV/m r1

22 ¼ 1 MPa for references
Conducting (poling axis x1) 14.61 3.402 3.402

Insulating (poling axis x1) 2.767 �20.64 2.767

Conducting (poling axis x2) 21.595 3.629 3.629

Insulating (poling axis x2) 3.626 �9.826 3.626

The unit for ERR is N/m.

Fig. 7. Variations of J -integral value with respect to b=a under the loading r1
22 ¼ 1 MPa, E1

1 ¼ 0:1 MV/m for the poling axis aligned
with x2-axis (a) J I; (b) J I and J II.
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Experiments show that crack extension is determined by the stress state within a characteristic distance r0
ahead of the crack tip, so when d � r0, then J I is an appropriate control parameter for fracture, but J II is an
appropriate one for d � r0. This conclusion is consistent with the near-tip electric fields and electric dis-
placement fields analysis in Section 4. This proposition is also consistent with Kuang�s opinion (Kuang and
Mao, 1996; Kuang and Ma, 2002) about the maximum ERR criterion. That opinion indicated that the

Fig. 8. Variations of J -integral value with respect to b=a under the loading r1
22 ¼ 1 MPa, E1

2 ¼ 0:1 MV/m for the poling axis aligned
with x2-axis (a) J I; (b) J I and J II.

Fig. 9. Variations of J -integral value with respect to b=a under the loading r1
22 ¼ 1 MPa, E1

1 ¼ 0:1 MV/m for the poling axis aligned
with x1-axis (a) J I; (b) J I and J II.
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direction of crack extension should be determined by the singular field at the main crack tip before ex-

tension, and that applying the J -integral only around the branched crack tip is not appropriate.

6. Conclusions

In this paper, using the Stroh formalism, a mixed electric boundary value problem for a two-dimensional

piezoelectric crack problem is solved. The results suggest that the stress intensity factors are identical

to those of conventional impermeable or conducting cracks. The electric field and electric displace-

ment exhibit singularity at crack tips but also at the junctures between the impermeable parts and

conducting parts. The electric field ahead of the crack tip transits from the standard conducting crack to the

impermeable crack as b=a changes from zero to unit. For E1
1 loading, increasing b=a is helpful to diminish

the electric field and electric displacement concentration near the crack tip irrespective of the poling di-

rection; for E1
2 loading, the longer the conducting length, the smaller the electric field and electric dis-

placement concentration near the crack tip. The research about J -integral shows that when the distance
between two singular points is less than the fracture characteristic length, J II is an appropriate control
parameter for fracture, otherwise, d � r0, J I is an appropriate one. As a first step for future study of the
complicated electric boundary problem involved in the experiment, the model proposed in the present

paper still awaits experimental tests and needs further investigation to meet the experimental situation more

precisely.
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Fig. 10. Variations of J -integral value with respect to b=a under the loading r1
22 ¼ 1 MPa, E1

2 ¼ 0:1 MV/m for the poling axis aligned
with x1-axis (a) J I; (b) J I and J II.
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Appendix A. Some definite integrals

Z
L

Xþ
abðtÞ
t � z

dt ¼
Z
L1[ L3

Xþ
abðtÞ
t � z

dt ¼ piXabðzÞ;Z
L

Xþ
abðtÞ
t � x

dt ¼
Z
L1[ L3

Xþ
abðtÞ
t � x

dt ¼ 0; x 2 L1 [ L3;Z
L

Xþ
abðtÞ
t � x

dt ¼
Z
L1[ L3

Xþ
abðtÞ
t � x

dt ¼ piXþ
abðxÞ; x 2 L2:

8>>>>>>><>>>>>>>:
Z
L

tXþ
abðtÞ
t � z

dt ¼
Z
L1[ L3

tXþ
abðtÞ
t � z

dt ¼ pizXabðzÞ;Z
L

tXþ
abðtÞ
t � x

dt ¼
Z
L1[ L3

tXþ
abðtÞ
t � x

dt ¼ 0; x 2 L1 [ L3;Z
L

tXþ
abðtÞ
t � x

dt ¼
Z
L1[ L3

tXþ
abðtÞ
t � x

dt ¼ pixXþ
abðxÞ; x 2 L2:

8>>>>>>><>>>>>>>:
Z
L

t2Xþ
abðtÞ

t � z
dt ¼

Z
L1[ L3

t2Xþ
abðtÞ

t � z
dt ¼ piðz2XabðzÞ � 1Þ;Z

L

t2Xþ
abðtÞ

t � x
dt ¼

Z
L1[ L3

t2Xþ
abðtÞ

t � x
dt ¼ �pi; x 2 L1 [ L3;Z

L

t2Xþ
abðtÞ

t � x
dt ¼

Z
L1[ L3

t2Xþ
abðtÞ

t � x
dt ¼ piðx2Xþ

abðxÞ � 1Þ; x 2 L2:

8>>>>>>>><>>>>>>>>:
Z
L

Xþ
b ðtÞ

ðt � zÞXþ
a ðtÞ

dt ¼
Z
L1[ L3

Xþ
b ðtÞ

ðt � zÞXþ
a ðtÞ

dt ¼ pi
XbðzÞ
XaðzÞ

� 1
� �

;Z
L

Xþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼
Z
L1[ L3

Xþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼ �pi; x 2 L1 [ L3;Z
L

Xþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼
Z
L1[ L3

Xþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼ pi
Xþ
b ðxÞ
Xþ
a ðxÞ

� 1
� �

; x 2 L2:

8>>>>>>><>>>>>>>:
Z
L

tXþ
b ðtÞ

ðt � zÞXþ
a ðtÞ

dt ¼
Z
L1[ L3

tXþ
b ðtÞ

ðt � zÞXþ
a ðtÞ

dt ¼ pizðXbðzÞ=XaðzÞ � 1Þ;Z
L

tXþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼
Z
L1[ L3

tXþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼ �pix; x 2 L1 [ L3;Z
L

tXþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼
Z
L1[ L3

tXþ
b ðtÞ

ðt � xÞXþ
a ðtÞ

dt ¼ �pix; x 2 L2:

8>>>>>>><>>>>>>>:
Appendix B. Material constants and remote electro-mechanical loading relations

The material constants for PZT-4 whose poling axis is along x3-axis are listed as follows (Park and Sun,
1995):
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c11 ¼ 139; c33 ¼ 113; c12 ¼ 77:8; c13 ¼ 74:3; c44 ¼ 25:6 ðGPaÞ;
e33 ¼ 13:8; e31 ¼ �6:98; e15 ¼ 13:4 ðCm�2Þ;
j11 ¼ 6:00� 10�9; j33 ¼ 5:47� 10�9 ðC2N�1m�2Þ:

The numerical forms of the matrix H and Im[Y] in Eq. (75) are:

CL ¼ 5:68� 1010 N=m2; CT ¼ 5:72� 1010 N=m2; w ¼ 7:62� 10�12 N=m2;
e ¼ 45:15 C=m2; f ¼ 1:88� 10�2 C=m2; e ¼ �5:72� 10�9 F=m:

In practice an application of remote electric displacement loading is more difficult than an application of

electric field, so in this paper we express all quantities in terms of E1
i instead of D

1
i . When the poling axis is

directed along the x2-axis, the relation between the remote electric displacement and the electric field are:

D1
1 ¼ 1:306� 10�8E1

1 þ 5:25� 10�10r1
12 ðC=m2Þ;

D1
2 ¼ 1:003� 10�8E1

2 � 1:783� 10�10r1
11 þ 2:398� 10�10r1

22 ðC=m2Þ:
ðB:1Þ

The relation between the remote electric displacement and the electric field for the poling direction along

the x1-axis are

D1
1 ¼ 1:003� 10�8E1

2 � 1:783� 10�10r1
11 þ 2:398� 10�10r1

22 ðC=m2Þ;
D1
2 ¼ 1:306� 10�8E1

1 þ 5:25� 10�10r1
12 ðC=m2Þ;

ðB:2Þ

which can be obtained by a coordinate transformation rule.

Appendix C. The reasonableness of the impermeable conditions on the boundary of the elliptic cavity

According to Gao and Fan (1999); Kuang and Ma (2002), the exact solution of a transversely isotropic

cavity filled air is

FaðzaÞ ¼ Ca þ ðba1l1 þ ba2l2 þ ba3l3Þ
1

aþ ipab
1

�
� zaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2a � ða2 þ p2ab2Þ
p #

;

where Ca is the function of r1
ij and pa, l1 and l2 are functions of r1

ij and the sizes of ellipse, bac is the

function of pa and material constants. Their expressions can be found in Gao and Fan (1999) and Kuang

and Ma (2002), and are omitted here. Only l3 is related to electric displacements Dc1 and D
c
2 in the elliptic

cavity with air and its expression is

l3 ¼
1

2
½aðD1

2 � Dc2Þ � ibðD1
1 � Dc1Þ�:

Due to the permittivity e0 of air is very small compared to that of the dielectric, so D1
2 � Dc2 � D1

2 ,

D1
1 � Dc1 � D1

1 . If D
1
2 ¼ D1

1 ¼ 0, then l3 is very small compared with l1 and l2. Therefore, the exact jointed
conditions at the boundary of ellipse filled with air can be approximated by an impermeable boundary

condition.
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